Counting Generalized Dyck Paths

نویسندگان

  • YUKIKO FUKUKAWA
  • Y. FUKUKAWA
چکیده

The Catalan number has a lot of interpretations and one of them is the number of Dyck paths. A Dyck path is a lattice path from (0, 0) to (n, n) which is below the diagonal line y = x. One way to generalize the definition of Dyck path is to change the end point of Dyck path, i.e. we define (generalized) Dyck path to be a lattice path from (0, 0) to (m, n) ∈ N2 which is below the diagonal line y = n m x, and denote by C(m, n) the number of Dyck paths from (0, 0) to (m, n). In this paper, we give a formula to calculate C(m, n) for arbitrary m and n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Humps and Peaks in Generalized Dyck Paths

Let us call a lattice path in Z × Z from (0, 0) to (n, 0) using U = (1, k), D = (1,−1), and H = (a, 0) steps and never going below the x-axis a (k, a)-path (of order n). A super (k, a)-path is a (k, a)-path which is permitted to go below the x-axis. We relate the total number of humps in all of the (k, a)paths of order n to the number of super (k, a)-paths, where a hump is defined to be a seque...

متن کامل

Bi-banded paths, a bijection and the Narayana numbers

We find a bijection between bi-banded paths and peak-counting paths, applying to two classes of lattice paths including Dyck paths. Thus we find a new interpretation of Narayana numbers as coefficients of weight polynomials enumerating bi-banded Dyck paths, which class of paths has arisen naturally in previous literature in a solution of the stationary state of the ‘TASEP’ stochastic process.

متن کامل

The Dyck pattern poset

We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered by P , as well as for the ...

متن کامل

ECO method and hill-free generalized Motzkin paths

In this paper we study the class of generalized Motzkin paths with no hills and prove some of their combinatorial properties in a bijective way; as a particular case we have the Fine numbers, enumerating Dyck paths with no hills. Using the ECO method, we define a recursive construction for Dyck paths such that the number of local expansions performed on each path depends on the number of its hi...

متن کامل

Pattern - avoiding Dyck paths †

We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered by P , as well as for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013